
DYNAMIC TIME WARPING AND DUAL-

ATTENTION NETWORK FOR MULTIVARIATE 

TIME SERIES CLASSIFICATION PROBLEMS 

UNIVERSITI KEBANGSAAN MALAYSIA 

LIM YEE LYN

Pus
at 

Sum
be

r 

FTSM



DYNAMIC TIME WARPING AND DUAL-ATTENTION NETWORK FOR 

MULTIVARIATE TIME SERIES CLASSIFICATION PROBLEMS 

2024 

LIM YEE LYN 

PROJECT SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF 

MASTERS OF DATA SCIENCE 

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY 

UNIVERSITI KEBANGSAAN MALAYSIA 

BANGI

Pus
at 

Sum
be

r 

FTSM



RANGKAIAN MELEDINGKAN MASA DINAMIK DAN DUA PERHATIAN 

UNTUK MASALAH KLASIFIKASI SIRI MASA PELBAGAI 

2024 

LIM YEE LYN 

PROJEK YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN 

DARIPADA SYARAT MEMPEROLEH IJAZAH 

SARJANA SAINS DATA 

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT 

UNIVERSITI KEBANGSAAN MALAYSIA 

BANGI 

Pus
at 

Sum
be

r 

FTSM



iii 

 

DECLARATION 

I hereby declare that the work in this thesis is my own except for quotations and 

summaries which have been duly acknowledged. 

22 July 2024 LIM YEE LYN 

                        P128731 

  

 Pus
at 

Sum
be

r 

FTSM



iv 

 

ACKNOWLEDGEMENT 

Undertaking this Master is a great challenge and opportunity. It would not have been 

possible without the support and help that I have received. 

I wish to express my most sincere gratitude and appreciation to Professor Dr. 

Salwani Abdullah for her patience in providing me with knowledge, invaluable advice, 

and assistance throughout this dissertation. I am extremely fortunate to have her as my 

supervisor, as with her guidance, I can complete this dissertation. 

 A big thank you to all my professors, lecturers, and postgraduate coursemates 

at UKM for their constant guidance and sharing of knowledge throughout the course. 

 I am very grateful for sponsorship from the organisation where I work, KPJ 

Tawakkal Health Centre. Also, deep appreciation to my employer and colleagues for 

their assistance throughout this period.  

 Last but not least, thank you to my family who provided continuous support to 

enable me to complete this dissertation.  

 

Pus
at 

Sum
be

r 

FTSM



v 

 

ABSTRAK 

Algoritma sedia ada untuk pengelasan siri masa digunakan kebanyakannya pada data 

siri masa univariat. Banyak masalah berkaitan situasi kehidupan sebenar melibatkan siri 

masa multivariate. Terdapat kekurangan algoritma dengan prestasi yang konsisten 

dalam MTSC. Satu cara untuk menambah baik MTSC ialah dengan memperluaskan 

algoritma UTSC yang menjanjikan kepada MTSC. Dynamic time warping (DTW) ialah 

kaedah yang mantap untuk TSC dan masih disyorkan sebagai penanda aras walaupun 

terdapat banyak algoritma yang lebih baharu. Salah satu algoritma terkini dengan 

prestasi baik pada MTSC ialah Rangkaian Perhatian Ganda (DA-Net). Dalam disertasi 

ini, kami menyiasat pelanjutan kaedah sedia ada DTW ke dalam algoritma baharu, DA-

Net. Kaedah yang dicadangkan ini dibandingkan dengan varian DTW, ShapeDTW-

1NN untuk kebolehgunaan dalam MTSC. Kedua-dua kaedah boleh digunakan pada 

MTSC. Perbandingan ShapeDTW-1NN dan DTW-DA-Net menunjukkan bahawa 

menggabungkan DTW kepada DA-Net yang merupakan algoritma yang lebih terkini 

mempunyai hasil yang lebih baik daripada varian DTW dengan klasifikasi tradisional, 

ShapeDTW-1-NN. Penggabungan DTW ke dalam DA-Net meningkatkan prestasi 

klasifikasi untuk Pengiktirafan Aktiviti Manusia dan data audio. Perbandingan DTW-

DA-Net dengan DA-Net dan algoritma berasaskan jarak sedia ada menghasilkan dua 

prestasi terbaik daripada lapan set data dengan ketepatan tertinggi 0.917 pada set data 

NATOPS dan 0.595 pada set data Arah Gerakan Tangan. 
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ABSTRACT 

Existing algorithms for time series classification are applied mostly to univariate time 

series data. Many real-life situations related problems involve multivariate time series. 

There is a lack of algorithms with consistent performance in MTSC. One way to 

improve MTSC is by extending promising UTSC algorithms to MTSC. Dynamic time 

warping (DTW) is a well-established method for TSC and is still recommended as a 

benchmark even though there are many newer algorithms. One of the recent algorithms 

with good performance on MTSC is the Dual Attention Network (DA-Net). In this 

dissertation, we investigate the extension of the existing established method DTW into 

a new algorithm, DA-Net. This proposed method is compared to a variant DTW, 

ShapeDTW-1-NN for the applicability in MTSC. Both methods are applicable to 

MTSC. Comparison of ShapeDTW-1NN and DTW-DA-Net showed that combining 

DTW to DA-Net which is a more recent algorithm has better outcome than the variant 

DTW with traditional classification, ShapeDTW-1-NN. The incorporation of DTW into 

DA-Net improved the performance of classification for Human Activity Recognition 

and audio data. Comparison of DTW-DA-Net with existing distance-based algorithms 

produced two best performances from eight datasets with the highest accuracy of 0.917 

on the NATOPS dataset and 0.595 on the Hand Movement Direction dataset. 
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CHAPTER I  

 

 

INTRODUCTION 

1.1 BACKGROUND 

Data points collected in sequence in regular time intervals are known as time series data 

(Liang & Wang 2021). TSC is the fitting of these data points to a discrete response 

variable (Middlehurst et al. 2023). Classification of time series data involves pattern 

detection and feature selection and has been very popular in the past few decades (Liang 

& Wang 2021). Time series classification (TSC) involving only one variable is known 

as Univariate Time Series Classification (UTSC) whereas if there is more than one 

variable, it is known as Multivariate Time Series Classification (MTSC) (Chen et al. 

2022). The order of these data is not necessarily in time; audio and images can also be 

transformed to frequency or series for TSC (Middlehurst et al. 2023). 

 

Figure 1.1 Example of MTSC using deep learning 

Source: Ismail Fawaz et al. (2019) 

MTSC depends on the extracted features which can be local, global, or spatial. 

Figure 1.2 shows local features which are temporal features, global features which are 
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the relationship between the local features, and the spatial features which can be 

calculated such as distance or correlation (Du et al. 2023; Xiao et al. 2021). 

 

Figure 1.2 Local, global and spatial dependency features. Arrows indicate spatial 

dependencies. 

Source: Du et al. (2023) 

With the advancement of technology, the development of wearable devices 

allows convenient monitoring of parameters such as blood pressure, pulse rate, blood 

oxygen saturation, and gesture (Qiu et al. 2022). There are many other real-life 

applications of MTSC. Distance-based methods with k-nearest neighbour (1-NN) 

demonstrated that it is the best method for small datasets (Deng et al. 2013).  

Many MTSC performed in previous years can be distinguished as traditional or 

deep-learning based and by methods such as distance-based (Euclidian Distance (ED) 

and Dynamic Time Warping (DTW)), shapelet-based, dictionary-based (Boss, 

WEASEL + MUSE) and interval-based methods (Chen et al. 2022). 

The latest taxonomy presented by Middlehurst et al (2023) classifies TSC into 

eight categories (as summarised in Figure 1.3); distance based, feature-based, interval-

based, shapelet-based, dictionary-based, convolution-based, deep learning-based, and 

hybrid approaches (Middlehurst et al. 2023). Distance-based measures distance 

between two series. Feature-based extracts global features and passes to the classifier. 

Interval-based selects phase-dependent intervals and converts them to features. 
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Shapelet-based produces phase-independent sub-series. Dictionary-based counts 

repeating patterns as a feature for the classifier. Convolution-based create feature 

patterns by convolutions and pooling. Deep learning is based on neural networks, 

whereas hybrid is the combination of two or more approaches (Middlehurst et al. 2023). 

One concern on MTSC is whether to normalize the dataset or not. In general 

cases, normalization helps to standardize comparison between datasets. However, for 

time series data, there is a complex relation between the points and shape where 

normalization may affect classification (Ruiz et al. 2021). ROCKET, TapNet, 

InceptionTime, and ResNet have internal normalization. The comparison of results may 

not be fair to the baseline DTW. A comparison of normalizing and not normalizing data 

by Ruiz et al showed that DTW performed worse on normalization and HIVE-COTE 

showed no significant difference. Therefore, the authors conclude that normalization is 

not necessary and will not create bias in the baseline DTW classifiers (Ruiz et al. 2021). 

Elastic similarity and distance measures can compute similar series together by 

realigning the temporal misalignments which are mainly applicable to univariate time 

series datasets. Shifaz et al. (2023) used seven common elastic similarity and distance 

measures showed that the use of independent and dependent DTW calculation affects 

the outcome where the result is consistent. A certain type of dataset will perform better 

with a certain type of calculation. DTW-dependent performs poorly when there are 

many dimensions in the dataset.  
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Figure 1.3 Taxonomy of Time Series Data Mining 
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The recent algorithms with improvement are mainly focused on UTSC. MTSC 

differs from UTSC as the different dimensions may have interaction. There may be 

more MTSC problems in real-life scenarios such as electrocardiogram interpretation 

and human activity recognition. Ruiz et al. (2021) suggest that the simplest approach to 

overcome the difficulty if multivariate data cannot be processed by an algorithm is to 

adapt a univariate classifier to the MTSC. In 2018, a standard UEA archive for 30 

MTSC problems was made available (Bagnall et al. 2018). Ruiz et al (2021) performed 

simple adaptations of UTSC approaches on 26 of the equal-length MTSC problems in 

the UEA archive. The outcome showed that it was difficult to overcome the results of 

DTW. Four algorithms are better than DTW but it was a comparison of only 26 datasets 

and may not be generalized to other cases. The benchmark distance-based approach in 

TSC is DTW, but there are also datasets where this is not true. However, it is commonly 

used for baseline as a reference and recommended as an initial benchmark for MTSC 

(Ruiz et al. 2021; Shokoohi-Yekta et al. 2017). Figure 1.4 shows how two time series 

are aligned with minimal distance using DTW. 

 

Figure 1.4 Example of how DTW compensate shape shift by realigning two series. 

Source: Middlehurst et al. (2023) 
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1.2 RESEARCH PROBLEM  

There are many distance-based methods performed on UTSC that perform well, but not 

established in MTSC. Many of the distance-based methods such as FastDTW (Salvador 

& Chan 2007), ShapeDTW-1NN (Zhao & Itti 2017) and Proximity Forest (Lucas et al. 

2019) are performed on UTSC. For MTSC, methods performed are such as ED-1NN, 

DTW-1NN, and their variants (Chen et al. 2013). We would like to investigate the 

applicability of UTSC methods on MTSC. 

Distance measurement between time series to assess similarities can be 

performed by Euclidean distance or DTW. There is a limitation in Euclidean distance 

for time series data and DTW is more suitable. DTW is a measurement of distance 

between time series data and can be used to detect similarities in time series. 

Dau et al. (2018) concluded that the amount of warping determines the 

performance of the data mining problem and the best warping window is non-

transferable between any two tasks (such as for clustering and classification). The data 

structure, time series shape, and dataset size determine the optimal warping window or 

value for warping. For supervised cases with sufficient data, cross validation with 

warping during training is recommended, but is not recommended for small dataset and 

unsupervised cases. The common method to select a warping window for TSC is via 

cross-validation over increments of the warping window as it is simple, parameter-free, 

and works well in practice. However, in some cases, this may not be the best way to 

determine the window. It is suggested that strengthening DTW as a baseline can further 

improve the outcome of more sophisticated methods, especially in real-world problems 

where minor improvements in accuracy matters (Dau et al. 2018).Therefore, we would 

like to investigate the effect of utilizing DTW in recent algorithms to see if there will 

be a difference in performance. 

The difficulties in MTSC have been challenged by many existing methods. DA-

Net is one of the recent methods that produced promising outcomes, with a limitation 

of fixed window size that may not be applicable to all real-life datasets. DTW analysis 

may be beneficial as an initial step before adjusting window size. 
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1.3 RESEARCH QUESTIONS 

1. Are distance-based methods such as DTW and shapeDTW performed on 

univariate time series analysis applicable to multivariate time series? 

2. Does the incorporation of DTW to DA-Net affect the performance of 

multivariate time series classification? 

3. How is the performance of DTW-DA-Net compared with other state-of-the-art 

multivariate time series classification methods?  

1.4 RESEARCH OBJECTIVES 

1. To assess the applicability of univariate distance-based classification methods 

in solving multivariate time series classification.  

2. To propose an incorporation of DTW with DA-Net; and compare to DA-Net. 

3. To evaluate and compare the performance of DTW-DA-Net with other state-of-

the-art multivariate time series classification methods. 

1.5 DISSERTATION ORGANIZATION 

This dissertation is divided into five chapters. Chapter I consists of the background, 

research problems, research questions and research objectives. 

Chapter II explores the problems in TSC, both in univariate and multivariate 

time series problems. This chapter also studies the current approaches for TSC problems 

with an in-depth exploration on distance based, DTW, and attention-based, DA-Net 

algorithms.  

Chapter III contains the research design, datasets, methods, and evaluation. The 

research design gives an outline of the proposed algorithms and evaluation used to test 

the objectives. The datasets are categorized by data type. DTW method, DA-Net 

algorithm, and parameters used for evaluation are explained. 
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Chapter IV shows the result and discusses the findings with relation to the 

research questions and objectives.  

Chapter V concludes the dissertation with the research summary, limitations, 

and future work. 
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CHAPTER II  

 

 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter of eight sections reviews available literature for TSC; the problems, and 

the algorithms performed. The reviews focus on classification problems, UTSC, MTSC, 

DTW, and DA-Net.  

Classification problems are introduced in section 2.2. Sections 2.3 and 2.4 

discuss the different approaches for UTSC of MTSC respectively. Section 2.5 studies 

the DTW approach. Self-attention and transformer-based methods are discussed in 

Section 2.6. Discussion in Section 2.7 shares the problems in literature and methods to 

overcome them. The summary in Section 2.8 concludes the literature review. 

2.2 CLASSIFICATION PROBLEMS 

TSC involves the use of machine learning algorithms to correctly predict and classify 

data from real values to the class labels. There has been increased interest in time series 

analysis in recent years. Traditional methods such as Random Forest and Support 

Vector Machines do not consider time series points in sequence when input into the 

method. Therefore, these methods are not suitable for TSC (Hao et al. 2021). 

Initial effective TSC methods are distance-based methods. Distance-based 

methods search for obvious patterns in the time series and classify them using 1-NN. 

The initial distance measure uses Euclidean distance. Minor changes in the series will 

affect the alignment causing inaccurate results. DTW is the choice for TSC due to its 

effectiveness in aligning time series.  
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Multi-layer perceptron (MLP) is an architecture of fully connected neurons with 

layers and neurons as hyperparameters. It works by a feedforward mechanism that 

processes input in a fixed manner. This results in the limitation of MLP in TSC where 

it is unable to detect temporal dependencies in time series data (Mohammadi Foumani 

et al. 2024). To overcome this, Iwana et al. (2020) used feature extractor, DTW which 

has an elastic matching ability. Compared to the dot product within a neuron that has 

stagnant weight mapping, DTW allows weights to be aligned into the layers. This 

method proved beneficial in overcoming the feedforward mechanism, allowing 

temporal patterns and variable length recognition in time series (Iwana et al. 2020). 

Apart from limitations on temporal features, MLP also cannot capture multi-scale input, 

trends, and fluctuations and therefore unable to handle irregular time series. For 

irregular data, CNN and transformers are more suitable (Mohammadi Foumani et al. 

2024)  

CNN networks have improved in recent years due to the increase in depth of the 

newer algorithms (Gu et al. 2018). Other means of improvement include using smaller 

convolutional filters, the addition of pooling layers for feature map dimension 

reduction, and batch normalization (Mohammadi Foumani et al. 2024). This increase 

allows better feature representation but also increases the risk of overfitting and 

increases difficulty in optimization. (Gu et al. 2018). Another disadvantage of CNN 

networks is that they use local data to produce features and therefore unable to capture 

long-term dependencies (Hao & Cao 2020). 

Recurrent neural network (RNN) is built with internal memory with a feed-

forward network. CNN is suitable for detecting spatial relationships which enables it to 

capture correlations of channels in the series whereas RNN captures temporal 

dependencies from previous data to predict upcoming values (Mohammadi Foumani et 

al. 2024). The advantages of both CNN and RNN make it a good hybrid method if used 

together as they overcome each other’s disadvantages. Combining the methods allows 

both temporal and spatial features to be captured. 

The hybrid method of RNN and CNN can detect local and temporal correlation 

but is unable to detect the long-range dependencies of the time series (Mohammadi 
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Foumani et al. 2024). In time series data, current points may be influenced by the 

previous points and can influence future points. The short-term and long-term 

dependencies is relative to when the points are affected (Hao & Cao 2020). It is possible 

for deep CNN and RNN to capture long historical data but is not justifiable due to the 

high computational requirements and there are still problems in capturing the data (Hao 

& Cao 2020). Another problem in MTSC using CNN and RNN is that the relation 

between the multiple variables does not appear in the feature extraction.  

Attention-based models have a broader field and can capture long-range 

dependencies (Hao & Cao 2020; Mohammadi Foumani et al. 2024). This method works 

by only extracting relevant features and ignoring irrelevant data.  

2.3 UNIVARIATE TIME SERIES CLASSIFICATION 

Bagnall et al. (2017) published a review in 2017 to compare 18 TSC algorithms on 85 

UCR datasets. This is then known by many as the ‘bake off’ for TSC. It categorized 

algorithms by feature extracted from time series data to whole series, distance, intervals, 

shapelets, dictionary, convolutional, combinations and model-based (Bagnall et al. 

2017.; Shifaz et al. 2023). From then, the UCR dataset has increased to more than 100 

datasets and there are many new algorithms. Table 2.1 summarizes some of the 

algorithm types performed in recent years. 

Distance-based methods for UTSC are usually used with 1-NN. Apart from 

DTW-1NN, improved distance similarity approaches are Elastic Ensemble (EE) (Lines 

& Bagnall 2015) and Proximity Forest (PF) (Lucas et al. 2019). Current distance-based 

methods can realign similar series using elastic adjustment.  
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Table 2.1 Summary of literature review on algorithm types in UTSC. 

Algorithm Algorithm Type 

WEASEL v2.0 WEASEL2.0 with Dilation(Schäfer & Leser 2023) Dictionary-based 

FreshPRINCE Fresh Pipeline with Rotation Forest Classifier 

(Middlehurst & Bagnall 2022) 

Feature-based 

HC2 HIVE-COTE version 2(Middlehurst et al. 2021) Hybrid 

ROCKET Random Convolutional Kernel Transform(Dempster et 

al. 2020) 

Convolution based 

ShapeDTW Shape Based DTW(Zhao & Itti, 2019) Distance-based 

EE Fast Elastic Ensemble (Oastler & Lines 2019) Distance-based 

PF Proximity Forest (Lucas et al. 2019a) Distance-based 

Catch22 Canonical Time Series Classification (Lubba et al. 2019)  Feature-based 

WEASEL Word Extraction for TSC (Schäfer & Leser 2017a) Dictionary-based 

ResNet Residual Network(Wang et al. 2017) Deep Learning based 

STC Binary Shapelet Transform Classifier(Bostrom & 

Bagnall 2017) 

Shapelet-based 

TSF Time Series Forest(Deng et al. 2013) Interval-based 

DTW-1NN has limited information on the temporal features that segregate 

different classes of time series. TSF is an interval-based method that can detect the 

temporal patterns and distortion of the axis. It is based on entrance (entropy and 

distance) gain. The limitation of this method is the computational complexity when the 

feature space is large (Deng et al. 2013).  

The dictionary-based method uses the bag-of-word concept. WEASEL (Schäfer 

& Leser 2017a) is an example of this type of method. Current TSC difficulties include 

inability to produce high accuracy with large data, methods which are scalable but 

compromised accuracy, or models with accuracy that is not scalable to large data. 

WEASEL extracts feature vectors and performs sliding windows for TSC. It is scalable 

and accurate. There is a disadvantage where it leaves a huge memory footprint and 

therefore limits its uses. This leads to the improvement of the model to WEASEL 2.0 

(Schäfer & Leser 2023) that incorporates dilation and hyperparameter ensembling 

resulting in improved performance with a fixed memory footprint. 

Random Convolutional Kernel Transform (ROCKET) is a kernel-based method 

that performs convolution to transform data for classification with logistic regression. 
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This method highlights the ability to train large datasets with minimal time (Dempster 

et al. 2020) 

Deep learning methods can be RNN or temporal convolution. ResNet and 

InceptionTime are examples of temporal convolution-based methods (Shifaz et al. 

2023). 

2.4 MULTIVARIATE TIME SERIES CLASSIFICATION 

The initial compilation of the MTSC dataset was by Baydogan1 but the data are small, 

have variable length, are dependent, and not a good representation for MTSC. From 

year 2018, 30 UEA MTSC by Bagnall et al (2017) allows focusing on classification 

tasks instead of preprocessing. Twenty-six of these datasets are of equal length.  

There are many MTSC performed in previous years using distance-based 

methods and nearest neighbour classification. In traditional methods, the same distance 

metric is used for datasets of various varieties which may result in lesser accuracy (Chen 

et al. 2021). Newer methods focus on time and less on the frequency domain. Another 

limitation of traditional practice is the assumption of a linear relationship on 

multivariate time series data. To overcome the limitation, Chen et al. (2021) performed 

time-frequency deep metric learning (TFDM) model which can learn nonlinear and 

meaningful distance of MTS data and develop multilevel time-frequency representation 

resulting in 18 public MTS datasets performing better than other state-of-the-art 

methods (Chen et al. 2021). 

Karim et al. (2018) extended and augmented the existing UTSC classification 

methods to MTSC, namely Long Short-Term Memory Fully Convolutional Network 

(LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN). (Karim et al. 2018) The 

models produced better results than many of the existing models with the additional 

benefit of minimal preprocessing (Karim et al. 2018). 

1 http://www.mustafabaydogan.com/multivariate-time-series-discretization-for-classification.html 
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Table 2.2 Summary of literature review on approaches for MTSC. 

Work Author 

Alignment-driven Neural Network (Bignoumba et al. 2024) 

Multi-feature based network (Du et al. 2023) 

Dual-attention network  (Chen, R et al. 2022) 

Time-frequency deep metric learning (Chen, Z et al. 2021) 

TapNet (Zhang et al. 2020) 

Long Short-Term Memory Fully Convolutional Network (Karim et al. 2018) 

Time Series Forecast (Deng et al. 2013) 

Discrete SVM and fixed cardinality warping (Orsenigo & Vercellis 2010) 

Orsenigo & Vercellis, (2010) proposed to use a combination of fixed cardinal 

warping distance with SVM to perform on MTSC of variable length. Firstly, the time 

series are converted to the same length by fixed cardinality of warping distance where 

the output is rectangularised to match similar pairs of time series. Then, the processed 

information is fed to a discrete SVM for regularization and classification. Four 

benchmark datasets and two real-world marketing data were used to produce increased 

accuracy of 0.5% to 3.1% compared to traditional SVM and 1-NN (Orsenigo & 

Vercellis 2010). 

Tapnet and LSTM-FCN are examples of deep learning method (Chen et al. 

2022). Even though deep learning methods can directly map low-dimension features to 

high-dimension features from raw data and there is a benefit of the lower requirement 

of a domain expert, there is a limitation in managing long sequences which is common 

in real-life situations (Chen et al. 2022) . 

There can be irregularities or inconsistencies in univariate and multivariate time 

series data due to the inability to obtain complete raw data which can cause sparse data 

and reduce the performance of traditional and deep learning models performance 

(Bignoumba et al. 2024). This is usually resolved by imputing or interpolating data but 

with the disadvantage of introducing noise into the data. Bignoumba et al. (2024) 

introduced a new deep neural network model called Alignment-driven Neural Network 

(ALNN) which uses a duplication process and exponential decay mechanism to convert 

irregular multivariate time series data into a pseudo-aligned (or pseudo-regular) latent 
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values before passing the data to RNN model. RNN is the recommended model for 

regular time series data (Bignoumba et al. 2024; Bińkowski et al. 2017) ALNN 

produced satisfactory results on MIMIC-III healthcare data in predicting mortality. The 

aggregation method in an hourlong bin to overcome the missing or inconsistent data 

problem can result in loss of data or fine-grained information (Bignoumba et al. 2024) 

The assumption in basic RNN models is that data is evenly spaced out, but this is not 

the case is real life. Bayesian Network (MacKay 1992), Gaussian Processes (Roberts et 

al. 2013), and Support Vector Regression (Vapnik & Golowich, 1996.) failed to 

overcome this as the models cannot capture complex temporal dependencies 

(Bignoumba et al. 2024). 

A time series attentional prototype network (TapNet) combines the traditional 

and deep learning methods. It can manage limited training labels and extract low-

dimensional features. The approach shows good outcomes on 18 UEA Multivariate time 

series compared to eight state-of-the-art baseline methods (Zhang et al. 2020). 

Traditional learning such as Time Series Forecast (TSF) which is a tree-

ensembled method that uses simple features such as mean, standard deviation and slope 

showed good performance with the benefit of computational efficiency compared to a 

one-nearest neighbor classifier with DTW (Deng et al. 2013; Chen et al. 2022). 

Traditional learning methods such as Bag-of-Patterns and Time Series Shapelet work 

well with small datasets but have difficulties in handling large multivariate data (Zhang 

et al. 2020). 

Many MTSC gives attention to local and global features, compared to spatial 

features. Multi-feature-based network which has a global-local block, and a spatial-

local block, was able to capture all these effects together and performed well on UEA 

datasets. The method works by capturing the spatial dependency features with a spatial-

local block while integrating the local and global features (Du et al. 2023). 
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2.5 DYNAMIC TIME WARPING 

DTW was introduced as early as 1957 by Bellman (1957) to solve optimization 

problems using global optimum. Then, in 1978, Sakoe & Chiba used DTW for speech 

recognition analysis.  

Table 2.3 Summary of literature review on DTW-related methods 

Work Author 

Python package: dtwParallel (Escudero-Arnanz et al. 2023) 

Parameterization of the cost function of DTW  (Herrmann et al. 2023) 

Wavelet-DTW Hybrid Attention Network (WHEN) (Wang et al. 2023) 

Amercing DTW (Herrmann & Webb 2023) 

MTSC bake-off evaluation (Ruiz et al. 2021) 

Generalizing DTW from UTSC to MTSC  (Shokoohi-Yekta et al. 2017) 

Shape DTW (Zhao & Itti 2017) 

Shape and inclination angle-based  (Cao & Liu 2016) 

Flexible DTW  (Hsu et al. 2015) 

Weighted DTW  (Jeong et al. 2011) 

FastDTW. (Salvador & Chan 2007) 

Derivative DTW (Keogh & Pazzani 2001) 

DTW in speech recognition (Sakoe & Chiba 1978) 

Dynamic Programming  (Bellman 1957) 

DTW itself may cause undesirable alignment and constraints may cause 

incorrect warping. Keogh & Pazzani (2001) proposed the derivative DTW to overcome 

these problems by using the properties of the shape for alignment instead of data points. 

Fast DTW which was introduced by Salvador & Chan (2007) resulted in a 

refined projected solution from a course resolution. This method produced better 

accuracy compared to Sakoe-Chuba Bands. Fast DTW is a form of DTW that has linear 

time and space complexity. The benefit of Fast DTW is that it can run on much larger 

datasets than DTW and warp both similar and dissimilar time series.  

Weighted DTW is a penalty-based method. The modified logistic weight 

function is assigned to points with a high difference to minimize the influence of outliers 
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(Jeong et al. 2011). This method is added to derivative DTW and compared with other 

approaches using the UCR dataset. There is improved accuracy in both classification 

and clustering problems using this method. 

Hsu et al. (2015) introduced flexible DTW which uses the flexible longest 

common subsequence where the score is added to a continued one-to-one match of long 

fragments. The writers used the voting scheme to compare their method with DTW and 

derivative DTW. Results show that there is a lower average error rate for flexible DTW. 

Cao & Liu (2016) proposed a method, SA_DTW, which analyzes the shape 

feature and tilt angle as features to search for the similarities of DTW in multivariate 

time series. This method improved the accuracy in matching similarities with the 

advantage of reduced time.  

DTW has high flexibility which can be an advantage or disadvantage in TSC. 

In cases where it has disadvantages, constraints can be applied to limit this, such as 

window constraint and weights that limits diagonal points to the cost of the alignment 

(Herrmann & Webb 2023). However, these two methods have drawbacks. Windows 

does not allow flexibility beyond the window, allows unconstrained flexibility within 

the window, and stops abruptly. Weights cause large warping at little cost. Herrmann 

& Webb (2023) introduced amerced DTW which uses an additive weight that can be 

tuned to overcome the mentioned disadvantages. 

Wang et al. (2023) focuses on the heterogeneity of time series where there is 

intra-sequence nonstationary and inter-sequence asynchronism. The writers explained 

that these factors are commonly overlooked. They proposed a hybrid attention network, 

WHEN which is made out of two modules: WaveAtt and DTWAtt. WaveAtt analyses 

the nonstationary time series whereas DTWAtt synchronizes the input sequences with 

a universal parameter. Experiment on the 30 UEA datasets showed that this method 

performed well. 

Escudero-Arnanz et al. (2023) created an open software named dtwParallel for 

the evaluation of DTW in univariate and multivariate time series data. It considers the 
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parallelization, multiple features, low floor, and high-ceiling design to allow ease of 

usage for different expertise levels.  

1-NN is one of the most used classification methods for TSC; and the distance-

based function commonly used together is DTW (Ruiz et al. 2021). An experimental 

comparison of recent MTSC by Ruiz et al (2021) concludes DTW is still the standard 

for TSC benchmark as it still performs well even if compared to newer algorithms (Ruiz 

et al. 2021). DTW can be performed in univariate or multivariate but most research are 

performed on univariate datasets dataset (Zhao & Itti 2017). DTW usage in MTSC is 

projected from existing DTW used for univariate. There are two ways for DTW in 

MTSC which are dependent or independent warping. There are mixed opinions on 

which option to select. Some opinions suggest that it is not necessary to select the type 

of DTW as both ways are equivalent. Some research did not state specifically how DTW 

is generalized to the multidimensional case. There is also a suggestion that both ways 

can produce different classification outcomes and proper analysis should be performed 

to select the suitable method for different cases. In this dissertation, we use the 

dependent approach as we consider the multivariate time series channels to be 

dependent. DTW from the sktime library and aeon toolkits are based on dependent 

DTW. Ruiz et al. (2021) used dependent DTW as their baseline on MTSC comparison. 

DTW can be explained as an algorithm search which match point-to point by 

the similarity of Euclidean distance. This matching is of coordinate value have risk of 

error as distinct local structures can be matched incorrectly. DTW achieves global 

optimum but can mistakenly pair two series as it may miss out on local matching Zhao 

& Itti (2017) proposed an improved version, called shapeDTW that matches similar 

local structures and avoids pairing of different neighbouring structures. The outcome of 

their method of NN-shapeDTW for the classification of 84 UCR univariate time series 

datasets showed that it is better than DTW on 64 datasets and improved the 

classification accuracy of 18 datasets by more than 10% (Zhao & Itti 2017).  

ShapeDTW is a series-to-series transformation where the time series is 

converted into shape descriptors. The shape descriptors are the subset of the time series 

with representative or neighboring points. It can be the original sequence, slope, mean 
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value, or wavelet. The original sequence consists of parts of similar points with 

dissimilar shapes. Time series can be split into multiple intervals Piecewise aggregate 

approximation, PAA is obtained by using the mean of datapoints in each of the divided 

series. If the gradient of each interval is used as a descriptor, it is termed slope. Discrete 

wavelet Transform, DWT uses a wavelet as a coefficient incorporated into the sequence 

to break down and join back sequences to produce the shape descriptor. Derivative uses 

DTW for shape representation like how slope is used. It is also possible to compound 

two or more shape descriptors together. Slope and derivative are not affected by shift 

on the y axis.  

The main difference between DTW and shapeDTW is that DTW measures 

similarities of two-time series by comparing the Euclidean distance between the time 

points whereas shapeDTW compares the Euclidean distance between the shape 

descriptors(Zhao & Itti, 2019). Therefore, DTW finds a global optimum whereas 

shapeDTW investigates local shape differences. 

Comparison of UTSC of DTW and variants on artificially simulated aligned 

path and real audio signals showed that shapeDTW has lower alignment errors 

compared to DTW, derivative DTW, and weighted DTW. NN-shapeDTW also 

outperforms NN-derivativeDTW (Zhao & Itti 2017). 

 Shokoohi-Yekta et al. (2017) suggests that DTW can be extended from UTSC 

to MTSC via two strategies, which are dependent or independent DTW. The 

Independent method calculates as a univariate method and sums up the distances 

whereas dependent DTW calculates each step as multidimensional and uses Euclidean 

distances for further calculation. They proposed an adaptive method to select the 

suitable choice but there is insufficient evidence to support the idea based on the 

outcome. 

2.6 DUAL ATTENTION NETWORK 

With the concept of channel features in the CNN layer, the writers Hu et al. (2017) were 

able to modify the dependencies between channels by using a squeeze-and-excitation 
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(SE) block. The blocks can regulate the features of the channels in a flexible manner 

and are piled collectively to be applied throughout datasets. The execution time may be 

prolonged but the benefit of using SE blocks in state-of-the-art CNN justify this 

disadvantage. 

Table 2.4 Summary of literature review on self-attention and transformer-based 

methods. 

Work Author 

Self-attention and relative positioning attention blocks (Abbasi & Saeedi 2023) 

Dual-attention network for MTSC (Chen et al. 2022) 

Multi-branch CNN with Squeeze and Excitation 

Attention Blocks 

(Altuwaijri et al. 2022) 

Transformer encoder for multivariate time series learning (Zerveas et al. 2021) 

Swin Transformer (Liu et al. 2021) 

CTNet (Lian et al. 2021) 

MSCRED (Zhang et al. 2019) 

Squeeze and Excitation Networks (Hu et al. 2017) 

Research has proposed that the modelling of local-global features is of 

importance. Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED) is an 

algorithm to detect and diagnose anomaly in time series data. It is made of a dual 

network to create a feature map that is fed into a convolutional decoder. The testing on 

an artificial dataset and real dataset concluded that the modelling of local and global 

features works better than state-of-the-art baseline methods (Zhang et al. 2019). 

Conversational transformer network, CTNet is used in modelling intra-modal 

and cross-modal interactions. It uses a transformer-based structure for conversation 

emotion recognition and produced a 2.1 to 6.2% increase in performance compared to 

F1-score of state-of-the-art methods (Lian et al. 2021). This showed that the global and 

local-features modelling is beneficial.  

Squeeze and excitation attention blocks is used together with multiple branch 

convolutional neural network in electroencephalography motor imagery classification. 

It was tested on two public datasets and performed 10% better than the baseline method 

in accuracy comparison. This is due to the self-attention blocks and selective reduction 
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of hyperparameters of the multiple branches. Even though the proposed model has 3.9 

times more hyperparameters compared to the baseline, result generation is fast due to 

the parallel processing (Altuwaijri et al. 2022). 

Abbasi & Saeedi (2023) proposed to improve TSC by introducing two attention-

based processing blocks and claimed that it applies to any Deep Neural Network (DNN) 

TSC. First block is Global Temporal Attention, and another is Temporal Pseudo-

gaussian augmented Self-attention. These blocks are incorporated into Fully 

Convolutional Network, ResNet, and InceptionTime and tested on UEA datasets 

resulting in improved accuracy and average rank. The writers highlighted that there is 

a difference in the range of improvement which is not consistent with the task (Abbasi 

& Saeedi 2023). 

Transformer encoder architecture has been performed by Zerveas et al (2021) 

on multivariate time series regression and classification. It is the first unsupervised 

learning method on multivariate time series data which produced better results than 

fully supervised learning methods (Zerveas et al. 2021).  

Liu et al. (2021) proposed Swin Transformer which is a hierarchical 

Transformer with shifted windows for computer vision. The shifted windows improved 

efficiency as they limit self-attention computation on non-overlapping local windows. 

The authors proposed that this method can be useful for all MLP architectures (Liu et 

al. 2021) 

The first unsupervised learning using transformer encoding by Zerveas et al. 

(2021) and hierarchical, self-attention Swin Transformer by Liu et al. (2021) showed 

beneficial for MTSC. This has led to the development of a Dual-Attention Network 

(DA-Net) by Chen et al. (2022) which consists of Squeeze-Excitation Window 

Attention (SEWA) and Sparse Self-Attention within Windows (SSAW) This method 

showed improved effectiveness in MTSC when compared to state-of-the-art methods.  

Based on the transformer model by Liu et al. (2021) and Zerveas et al. (2021); 

Chen et al. (2022) proposed to use Swin transformer for MTSC due to its ability to scale 
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down the architecture, able to perform shifted window self-attention of non-overlapping 

windows and manage the global long-range dependencies of MTSC. However, there 

are two difficulties with the method where it is unable to detect local discriminating 

features and there is increase in calculation complexity when the window size increase. 

The first problem can be overcome by Squeeze-Excitation Window Attention (SEWA) 

which aggregates feature window by squeezing and then uses MLP for excitation to 

keep the local key sequences in a feature window of different scale and weightage. To 

overcome the second problem of Swin Transformer, Sparse Self-Attention within 

Windows (SSAW) is performed where only activated/higher weighted dot-product 

scores calculated by Kullback-Leibler and timestamps that do not overlap are selected. 

This reduces complexity in calculation even if there is an increase in window size. Chen 

et al. (2022) combined SEWA and SSAW to produce a dual-attention network (DA-

Net) for MTSC which showed effectiveness in MTSC compared to state-of-the-art 

approaches.  

Chen et al. (2022) performed further analysis on the effect of window size on 

PEMS dataset. The dataset was selected randomly. Different window sizes 

(32,48,64,96) were performed resulting in better results of PEMS which may have 

DTW important impact. They concluded that the window size can have a non-negligible 

effect on the outcome. 

2.7 DISCUSSION 

Traditional methods such as Random Forest and support vector machine are not suitable 

for TSC as it is unable to capture the sequence in time series data. Initial TSC methods 

uses Euclidean distance with 1-NN but does not produce promising outcome as minor 

changes in the series affects the series alignment. DTW is the recommended distance-

based method to be used with 1-NN as the standard baseline TSC.  

CNN captures spatial dependencies and RNN captures temporal dependencies. 

Combining both methods produced a hybrid which captures both spatial and temporal 

features for improved performance. The hybrid method enables algorithms to overcome 

other method’s limitations.  
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There are more established and upgraded versions of UTSC algorithms 

compared to MTSC. It is suggested that algorithms used in UTSC can be extended to 

MTSC. DTW can be used for UTSC or MTSC. For the extension of DTW from 

univariate to multivariate data, there are two methods to calculate the distance, 

dependent DTW and independent DTW. There is no standard recommendation on 

which DTW calculation to use.  

Existing transformer-based methods have limitations on detecting local 

discriminating features and increase in complexity when there is an increase in window 

size. Chen et al (2022) proposed DA-Net which consists of SEWA and SSAW to 

overcome these limitations. 

2.8 CHAPTER SUMMARY 

This chapter studies the background, history, and limitations of TSC. Reviews of 

available methods and recent methods are compared. The summary of literature review 

listed in Tables 2.1, 2.2, 2.3, and 2.4 are presented in Sections 2.3, 2.4, 2.5, and 2.6 

respectively. The discussion explains the findings from the literature on the proposed 

method.  

The next chapter explains the research design, dataset, method, and evaluation 

of the proposed method. 
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CHAPTER III  

 

 

MULTIVARIATE TIME SERIES CLASSIFICATION WITH DYNAMIC TIME 

WARPING AND DUAL ATTENTION NETWORK 

3.1 INTRODUCTION 

This chapter is made up of six sections that explain the design of this dissertation to 

address the three research questions; “Are distance-based methods such as DTW and 

shapeDTW performed on univariate time series analysis applicable to multivariate time 

series?”, “Does incorporation of DTW to DA-Net affect the performance of multivariate 

time series classification?”, and “How is the performance of DTW-DA-Net compared 

with other state-of-the-art multivariate time series classification methods?”.  

Section 3.2 explains the research design. The eight datasets used are classified 

accordingly to four data types and described in Section 3.3. A detailed explanation of 

the algorithms is in Section 3.4.  

Section 3.4 is split into two sections: DTW and DA-Net. Section 3.4.1 on DTW 

gives examples of numerical calculation. Section 3.4.1 (a), (b), and (c) are definitions 

from the literature. Section 3.4.1(d) explains the difference in the calculation for 

multivariate time series data and section 3.4.1(e) shows how DTW for UTSC is 

modified for MTSC. Section 3.4.1 (f) shows the variant of DTW. The second part of 

Section 3.4 focuses on DA-Net, which is split into two sections for explanation of the 

SEWA and SSAW layer.  

Section 3.5 defines the performance and evaluation methods used, followed by 

a chapter summary in Section 3.6. 
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3.2 RESEARCH DESIGN  

We would like to investigate the integration of the distance-based method, DTW into 

existing algorithms to produce better output. The distance-based method selected was a 

well-known benchmark used in TSC in previous years. Even with new algorithms in 

recent years, Ruiz et al. (2021) still propose to use DTW as the initial benchmark for 

MTSC in their experimental evaluation. Therefore, in this dissertation we used DTW to 

incorporate into one of the recent algorithms which have produced promising result, 

DA-Net. Ruiz et al. (2021) stated that one of the top classifiers that works well with 

DTW is 1-NN. In this dissertation, we selected a variant, ShapeDTW which has 

produced good results in UTSC to work with 1-NN.  

The research design is summarized in Figure 3.1. This dissertation is designed 

in a way to assess the three objectives proposed. The eight UEA datasets will be used 

to test the objectives. Details of the methods and algorithms used are in Section 3.4.  

The initial step is performing MTSC using the proposed DTW-DA-Net and 

ShapeDTW to assess the usage of UTSC distance-based methods on MTSC. This will 

answer the first research question “Are distance-based methods such as DTW and 

shapeDTW performed on univariate time series analysis applicable to multivariate time 

series?”. The percentage difference in accuracy in the methods will be evaluated and 

explained in chapter four.  

Further analysis to investigate the second research question “Does 

incorporation of DTW to DA-Net affect performance of multivariate time series 

classification?” compares DTW-DA-Net and DA-Net The evaluation metrics are 

discussed in chapter 3.5 and results presented in chapter 4.3.  

The third research question compares DTW-DA-Net and ShapeDTW with 

existing distance-based algorithms to answer, “How is the performance of DTW-DA-

Net compared with other state-of-the-art multivariate time series classification 

methods?”. The accuracy is compared using the Wilcoxon signed ranked test and 

summarized in a critical diagram which is discussed in chapter 4.4. 
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 Objectives  Evaluation 

 

Objective 1 

• DTW-DA-Net 

• Shape DTW-1NN 

 • Accuracy 

• Percentage difference 

    

Dataset 

• AWR 

• AF 

• BM 

• HMD 

• HB 

• NA 

• SRS2 

• SWJ 

  

 

 

Objective 2 

• DA-Net 

• DTW-DA-Net 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• Percentage difference 

  

     

  

Objective 3 

• ED-1NN 

• DTW-1NN-D   

• ED-1NN(norm)  

• DTW-1NN-I  

• DTW-1NN-I (norm)  

• DTW-1NN-D 

(norm) 

• DA-Net  

• ShapeDTW-1NN 

• DTW-DA-Net 

 

• Accuracy 

• Friedman test 

• Wilcoxon signed rank 

test 

• Critical Difference 

Diagram 

 

 

Figure 3.1 Research Design 

3.3 DATASET 

Benchmark dataset obtained from UEA1 with a repository of 30 datasets and data size 

ranging from 27 to 50,000 that covers different areas: human activity recognition 

(HAR), motion, electrocardiogram (ECG), electroencephalograms/ 

magnetoencephalography (EEG/MEG), and Audio Spectra (AS) (Bagnall et al. 2024).  

These data types can be categorized into electrical biosignals, accelerometer/gyroscope 

generated, coordinates, and audio. Other data types available but not used in this 

dissertation are such as spectrometry, photometry, and bespoke hardware (Ruiz et al. 

2021). 

1 https://www.timeseriesclassification.com/ 
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In this dissertation, we focus on the fixed-length dataset and omit the variable-

length dataset. Due to computational limitations, very large dataset is also omitted as 

they are unable to complete the process in 48 hours. Selected datasets used are shown 

in Table 3.1. 

Table 3.1 Eight publicly available UEA MTSC datasets  

Dataset 
Character 

Abbreviation Train Test Channel Attribute Classes 

Articulary Word 

Recognition 

(Normalised) 

AWR 275 300 9 144 25 

Atrial 

Fibrillation 
AF 15 15 2 640 3 

Basic Motion BM 40 40 6 100 4 

Hand Movement 

Direction 

(Normalised) 

HMD 160 74 10 400 4 

Heartbeat HB 204 205 61 405 2 

NATOPS NA 180 180 24 51 6 

Self Regulation 

SCP2 
SRS2 200 180 7 1152 2 

Stand Walk 

Jump 
SWJ 12 15 4 2500 3 

By referring to the BM dataset in Table 3.1, there are six channels. Each channel 

has a length of 100 data points representing 100 attributes. There are 40 train samples 

and 40 test samples for each attribute that are categorized into 4 classes. Figure 3.2 

shows an example of the first attribute in channel one where there are a total of 40 

samples categorized into the four classes of standing, running, walking, and badminton. 

Table 3.2 shows the data of the first attribute in the six channels. 
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Figure 3.2 Visualization of channel one, first attribute, with a total of 40 samples in 

four classes (standing, running, walking, badminton) for BM data. 

 

Table 3.2 Example data of the first attribute from channel one to six 

Attribute Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 

1 40 samples 

 

Min:  

-0.814 

 

Max:  

2.508 

 

Mean: 

 0.323 

40 samples 

 

Min: -

3.375 

 

Max: 

1.783 

 

Mean: -

0.156 

40 samples 

 

Min: -

1.411 

 

Max: 

1.549 

 

Mean: -

0.185  

40 samples 

 

Min: -

1.159 

 

Max: 

0.684 

 

Mean: -

0.055 

40 samples 

 

Min: -

0.527 

 

Max: 

0.743 

 

Mean: 

0.044 

40 samples 

 

Min: -

1.377 

 

Max:  

0.906 

 

Mean: 

0.127 
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Datasets are categorised according to domain type summarised in Figure 3.3 as 

mentioned by Ismail Fawaz et al. (2019), Ruiz et al. (2021), and Schäfer & Leser 

(2017b) 

Figure 3.3 UEA Dataset according to data type 

Source: Ruiz et al. (2021) 

3.3.1 Electrical Biosignals 

Many real-life situations use electrical biosignals such as ECG, EEG, and MEG. ECG 

measures the heart’s electrical activity, EEG measures the brain waves, and MEG 

measures the brain’s magnetic magnitude. In this dissertation, examples of such datasets 

are AF, HMD, SRS2, and SWJ (Ruiz et al. 2021). 

a. Atrial Fibrillation(Goldberger et al. 2000) 

This dataset was created from data used in Computers in Cardiology Challenge 2004 

consists of two-channel ECG recordings. It predicts spontaneous termination of AF. 

Raw instances of 5 s segments of AF, with two ECG signals, each sampled at 128 

samples per second; with class labels n,s, and t. Class n is a non-termination of AF at 

UEA MTSC Dataset

Electrical Biosignals 
(ECG/EEG/MEG)

Atrial 
Fibrillation

Hand 
Movement 
Direction

Self 
Regulation 

SCP2

Stand Walk 
Jump

Accelerometer/ 
gyroscope (HAR)

Basic Motion

NATOPS

Coordinates 
(Motion)

Articulary 
Word 

Recognition

Audio 
(AS)

Heartbeat

Others

Spectrometry

Photometry

Bespoke 
hardware
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least one hour after recording, class s is AF that self-terminates at least one minute after 

recording, and class t is immediate termination within 1 s of recording.  

 

 

Figure 3.4 Visualization of Atrial Fibrillation dataset 

 

b. Hand Movement Direction 

This dataset was used in the BCI competition where participants perform wrist 

movement in four different directions and their brain (MEG) activity is recorded. A 

participant is to move a joystick from the center position to one of the four target classes; 

left, right, front, or back, with the right hand and wrist. The data from 0.4 s before to 

Pus
at 

Sum
be

r 

FTSM



31 

 

0.6 s after the movement was recorded and resampled at 400Hz. There are 10 series per 

case from 10 MEG channels.  

 

 

Figure 3.5 Visualization of Hand Movement Direction dataset 
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c. Self Regulation SCP2 

This dataset was used in the BCI II competition. An artificially respirated ALS patient’s 

cortical potentials were recorded when requested to move a cursor up and down on a 

computer screen. The target class is measured as positive/downward movement on 

screen and negative/upward movement on screen. The sampling rate of 256Hz and 

record length of 4.5 s produces 1152 samples in each trial. 

 

to be continued… 
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…continuation 

 

Figure 3.6 Visualization of Self Regulation SCP2 dataset 

 

d. Stand Walk Jump(Goldberger et al. 2000) 

Four pairs of electrodes built on a patch are placed on a healthy 25-year-old male to 

monitor the effect of motion artifacts on ECG signals. The classes from this are 

standing, walking, and jumping.  
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Figure 3.7 Visualization of StandWalkJump dataset 

3.3.2 Accelerometer/gyroscope 

Accelerometer measures impacts or vibrations by the speed and gyroscopes measure 

rotational motions. Basic Motions and NATOPS are some of the datasets that uses 

accelerometers and gyroscopes. These data types are also known as Human Activity 

Recognition (HAR) 
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a. Basic Motion 

Four students wore a smartwatch each and performed walking, resting, running, and 

badminton activities which were the classes. They recorded the motion five times and 

data was sampled once every tenth of a second for ten seconds. Accelerometer x,y,z 

and gyroscope x,y,z data were collected. 

 

 

Figure 3.8 Visualization of Basic Motions dataset. 
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b. NATOPS (Ghouaiel et al. 2017) 

Data is collected from eight locations on the hands, elbows, wrists, and thumbs and 

classified into six actions; have command, all clear, not clear, spread wings, fold wings, 

and lock wings.  

 

to be continued…. 
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…continuation 

 

Figure 3.9 Visualization of NATOPS dataset 

 

3.3.3 Coordinates 

Coordinates are motion data obtained in Cartesian space such as gesture and digit 

recognition.  
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a. Articulary Word Recognition (Wang Jun et al. 2013) 

Tongue and lip movement are monitored using an Electromagnetic Articulograph 

during speech. A number of 25 words from native English speakers are collected as data 

by attaching head, tongue, lips, and jaw. Nine out of 36 dimensions are used in this data. 

 

to be continued… 
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…continuation 

 

Figure 3.10 Visualization of Articulary Word Recognition dataset 
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3.3.4 Audio 

Audio, or audio spectra, is the best to describe time series data and majority of real-life 

applications are of this type.  

a. Heartbeat(Goldberger et al. 2000) 

This dataset obtained from PhysioNet/CinC Challenge 2016 records the hearts sound 

from healthy and pathological patients collected from contributors around the world. 

Heart sounds are collected from four different locations of the body and classified as 

normal or abnormal. 

 

to be continued… 
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…continuation 

 

Figure 3.11 Visualization of Heartbeat dataset. 
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3.4 METHODS 

3.4.1 Dynamic Time Warping 

a. Euclidean Distance 

Initial distance measures use Euclidean distance; which measures the sum of squared 

distance between two points; for example, a, and b in equation 3.1 (Sammour et al. 

2019). 

 

𝑑𝐸(𝑎, 𝑏) =  √∑(𝑎𝑖 −  𝑏𝑖)2 

𝑚

𝑖=1

 

 (3.1) 

Euclidean distance does not consider the order and only allows one to one point 

comparison whereas DTW allows many to one comparison as shown in Figure 3.12. 

Therefore, DTW has more advantages due to the elastic distance measure which 

calculates all the pointwise distance matrix for all the points in the series and selects the 

minimal cost matrix. 

 

Figure 3.12 Comparison of DTW and ED 

Source: Tavenard Romain (2021) 

b. Distance in Dynamic Time Warping 

The distance for DTW between two series of equal length series A = (𝑎1, 𝑎2,𝑎3,……….𝑎𝑚) 

and series B = (𝑏1, 𝑏2,𝑏3,……….𝑏𝑚) can be calculated by equations 3.2 to 3.6 in a stepwise 

manner (Ruiz et al. 2021). 
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Step 1 

M is a matrix of m x m,where 

 

𝑀𝑖,𝑗 = (𝑎𝑖 −  𝑏𝑗)
2
 

 

(3.2) 

Step 2 

Where warping path  

 

𝑃 = ((𝑒1, 𝑓1, ), (𝑒2, 𝑓2, ), … … . (𝑒𝑠, 𝑓𝑠 , ), ) (3.3) 

 

is a set of matrix index from M with constraints 

(𝑒1, 𝑓1, ) = (1,1) 

(𝑒𝑠, 𝑓𝑠, ) = (𝑚, 𝑚) 

0 ≤ 𝑒𝑖+1 −  𝑒𝑖  ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑚 

0 ≤ 𝑓𝑖+1 −  𝑓𝑖  ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑚 

 

 

  

Step 3   

Let 𝑝𝑖 = 𝑀𝑒𝑖,𝑓𝑖 be the distance path for 𝐷𝑝= ∑ 𝑝𝑖
𝑚
𝑖=1  (3.4) 

  

Step 4  

Find the warping path with the minimum accumulative distance  

 

𝑃 = 𝑚𝑖𝑛𝑝∈𝑃𝐷𝑝(𝐴, 𝐵) (3.5) 

  

Step 5  

Calculate optimum distance  

 

𝐷𝑇𝑊(𝑖, 𝑗) = 𝑀𝑖,𝑗 + 𝑚𝑖𝑛 {

𝐷𝑇𝑊 (𝑖 − 1, 𝑗)
𝐷𝑇𝑊 (𝑖, 𝑗 − 1)

𝐷𝑇𝑊 (𝑖 − 1, 𝑗 − 1)
 

Final distance = DTW (m,m) 

 

(3.6) 
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B 

c. Univariate Time Series Dynamic time warping 

DTW searches for the optimum alignment between time series by calculating the 

distance between the series. DTW can be performed in univariate or multivariate 

datasets.(Zhao & Itti, 2017). 

An example dataset in Table 3.3 as the data used in this dissertation is too large. 

Table 3.3 Example dataset for DTW calculation 

Series A Series B 

1 1 

7 2 

4 8 

8 5 

2 5 

9 1 

6 9 

5 4 

2 6 

0 5 

 

Step 1 

Create a cost matrix where series A on the left is labelled from bottom to top, and 

series B on the bottom is labelled from left to right (Salvador & Chan 2007). 

 

 
0           

2           

5           

6           

9           

2           

8           

4 v vi         

7 iii iv         

1 i ii         

 1 2 8 5 5 1 9 4 6 5 

Figure 3.13 Create a cost matrix 

 

 

 

A 
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A 

B 

B 

Step 2  

Calculate the cost matrix with equation 3.6 and fill in calculated figures starting from 

the bottom left corner. 

Calculation according to equation 3.6 for 

Value i  : |1 –1| + min( 0 )  = 0 

Value ii : |1 –2| + min( 0 )  = 1 

Value iii : |7 -1| + min( 0 )  = 6 

Value iv : |7 -2| + min( 6, 0, 1 ) = 5 

Value v : |4 -1| + min( 6 )  = 9 

Value vi : |4 -2| + min( 9,6,5 )  = 7 

Calculation for all the distances: 

Figure 3.14 Calculation for all the distances. 

0 36 29 32 22 22 16 24 16 18 17 

2 35 27 24 17 17 15 21 12 14 12 

5 34 27 18 14 14 18 14 10 10 9 

6 30 24 15 14 14 18 10 9 9 10 

9 25 20 13 13 13 15 7 12 13 17 

2 17 13 12 9 9 7 14 10 14 17 

8 16 13 6 6 6 11 8 12 14 17 

4 9 7 6 3 4 7 12 12 14 15 

7 6 5 2 4 6 12 14 17 18 20 

1 0 1 8 12 16 16 24 27 32 36 

 1 2 8 5 5 1 9 4 6 5 

 

 

Step 3 

Determination of the warping path, starting from the top right to the bottom left 

corner, using the smallest figure to find the least warp distance for the time series A 

and B (Salvador & Chan 2007). 

Warping path: [17,12,9,9,9,7,7,6,3,2,1,0] 

 

0 36 29 32 22 22 16 24 16 18 17 

2 35 27 24 17 17 15 21 12 14 12 

5 34 27 18 14 14 18 14 10 10 9 

6 30 24 15 14 14 18 10 9 9 10 

9 25 20 13 13 13 15 7 12 13 17 

2 17 13 12 9 9 7 14 10 14 17 

8 16 13 6 6 6 11 8 12 14 17 

4 9 7 6 3 4 7 12 12 14 15 

7 6 5 2 4 6 12 14 17 18 20 

1 0 1 8 12 16 16 24 27 32 36 

 

 

 

1 2 8 5 5 1 9 4 6 5 

Figure 3.15 Determination of warping path. 
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Step 4 

Final Distance Calculation with equation 3.7 (Herrmann et al. 2023) 

D =
∑ 𝑑𝑙

𝑖=1 (𝑖)
∑ 𝑙𝑙

𝑖=1
⁄  

where l is the length of the series d. 

 

From above, l = 12 

 

DTW distance = (17+12+9+9+9+7+7+6+3+2+1+0)/12 

  

 = 6.833 

(3.7) 

The example shows the DTW for the univariate dataset.  

d. Multivariate distances 

DTW for univariate applies to multivariate data with differences in distance calculation. 

There are two different calculations which are independent and dependent DTW.  

 

Figure 3.16 Independent DTW on left and dependent DTW on right. Dimension A is 

in blue and dimension B is in green. 

Source: Shifaz et al. (2023) 
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For independent DTW, the distance between each channel is calculated 

independently (similar to univariate), and then total of each distance is added together 

as shown in equation 3.8 (Shokoohi-Yekta et al. 2017). In equation 3.8, each channel is 

independent to others. 

𝑑𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡(𝑎, 𝑏) =  ∑ 𝑑(𝑎𝑐,

𝑘

𝑐=1

𝑏𝑐)  

where k is the number of channels and  

d (ac, bc) is defined as distance of cth channel of a and cth channel of b. 

 

(3.8) 

Example calculation for independent DTW of two points a and b with three 

channels using Equation 3.8:  

Point a = (1, 2, 3), 

Point b = (4, 5, 6) 

 

Distance 1:  𝑑𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 =  |1 − 4| = 3 

Distance 2:  𝑑𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 =  |2 − 5| = 3 

Distance 3:  𝑑𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 =  |3 − 6| = 3 

 

DTW distance independent = 3+3+3 = 9 

For dependent DTW, the distance of all the matrix, M data points are calculated 

as cumulative squared Euclidean distance instead of single points as shown in equation 

3.9 (Shokoohi-Yekta et al. 2017). In this dissertation, we use DTW from aeon toolkit2 

which assumes the dependent approach.  

𝑀𝑖,𝑗(𝑎, 𝑏) = √∑ 𝑑(𝑎𝑐,𝑖

𝑘

𝑐=1

−  𝑏𝑐,𝑗) 2  

where ac,i is the ith data point in cth channel  

and bc,j is the jth data point in cth channel. 

 (3.9) 

2 https://www.aeon-toolkit.org/en/v0.9.0/ 
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Point a = (1, 2, 3),  

Point b = (4, 5, 6) 

Distance :  𝑑𝑚 =  √(1 − 4)2 +  (2 − 5)2 + (3 − 6)2 

=  √9 + 9 + 9  

=  5.2 

DTW distance dependent  = 5.2 

The calculation example showed that independent DTW and dependent DTW 

produce different outputs. DTW used in this dissertation is the dependent DTW 

approach and an example of implementation will be based on this. 

e. Multivariate Time Series Dynamic Time Warping 

Section 3.4.1(b) shows how the DTW distance of a two-time series is calculated for 

univariate data. For multivariate data, the principle of extending the univariate method 

to multivariate is performed in step 2 and step 4 below.  

In step 2, by incorporating the dependent DTW formula from Equation 3.9 in 

Section 3.4.1(d) into Equation 3.6 in Section 3.4.1(b), the matrix is updated with new 

values for determination of the warping path with the lowest distance value. 

In step 4, distance calculation for univariate data in Equation 3.7 in section 

3.4.1(c) is also modified by using Equation 3.9. Equation 3.9 which is the calculation 

of distance for dependent DTW is used to replace the univariate DTW distance 

calculation. 

Example dataset for multivariate time series: 

Sequence A = [(1,2,1), (2,3,2), (3,4,3)] 

Sequence B = [(1,1,2), (2,2,3), (3,3,4)] 
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Step 1 

Create cost matrix with an extra row and column for initialisation. 
 

∞ vii viii ix 

∞ iv v vi 

∞ i ii iii 

 ∞ ∞ ∞ 

Figure 3.17 Create cost matrix.for multivariate time series. 

Step 2 

Calculate the cost matrix by incorporating equation 3.9 into equation 3.6 and fill in 

calculated figures starting from the bottom left corner.  

 

To calculate value i (i  = 1, j = 1): 

Cost  =  √(1 − 1)2 +  (2 − 1)2 +  (1 − 2)2  =  √2  = 1.41 

Value i  = 1.41 + min (∞, 0, ∞) = 1.41 

 

To calculate value ii (i  = 1, j = 2): 

Cost  =  √(1 − 2)2 +  (2 − 2)2 +  (1 − 3)2  =  √5  = 2.24 

Value ii  = 2.24 + min (1.41, ∞, ∞) = 3.65 

 

To calculate value iii (i  = 1, j = 3): 

Cost  =  √(1 − 3)2 +  (2 − 3)2 +  (1 − 4)2  =  √14 = 3.74 

Value iii  = 3.74 + min (3.65, ∞, ∞) = 7.39 

 

To calculate value iv (i  = 2, j = 1): 

Cost  =  √(2 − 1)2 +  (3 − 1)2 +  (2 − 2)2  =  √5  = 2.24 

Value iv  = 2.24 + min (∞, ∞, 1.41) = 3.65 

 

To calculate value v (i  = 2, j = 2): 

Cost  =  √(2 − 2)2 +  (3 − 2)2 +  (2 − 3)2  =  √2  = 1.41 

Value v  = 1.41 + min (3.65, 1.41, 3.65) = 2.82 

 

To calculate value vi (i  = 2, j = 3): 

Cost  =  √(2 − 3)2 +  (3 − 3)2 +  (2 − 4)2  =  √5  = 2.24 

Value vi  = 2.24 + min (2.82, 3.65, 7.39) = 5.06 

 

To calculate value vii (i  = 3, j = 1): 

Cost  =  √(3 − 1)2 +  (4 − 1)2 +  (3 − 2)2  =  √14 = 3.74 

Value vii  = 3.74 + min (∞, ∞, 3.65) = 7.39 
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To calculate value viii (i  = 3, j = 2): 

Cost  =  √(3 − 2)2 +  (4 − 2)2 +  (3 − 3)2  =  √5  = 2.24 

Value viii  = 2.24 + min (7.39, 3.65, 2.82) = 5.06 

 

To calculate value ix (i  = 3, j = 3): 

Cost  =  √(3 − 3)2 +  (4 − 3)2 +  (3 − 4)2  =  √2  = 1.41 

Value ix  = 1.41 + min (5.06, 2.82, 5.06) = 4.23 

Calculation for all the distances: 

 

∞ 7.39 5.06 4.23 

∞ 3.65 2.82 5.06 

∞ 1.14 3.65 7.39 

 ∞ ∞ ∞ 

Figure 3.18 Calculation of all the distances for multivariate time series data. 

Step 3 

Determination of warping path starting from the top right to bottom left corner via 

the smallest value: 

 

 

 

 

 

 

 

Warping path: [(3,3), (2,2), (1,1)] 

∞ 7.39 5.06 4.23 

∞ 3.65 2.82 5.06 

∞ 1.14 3.65 7.39 

 ∞ ∞ ∞ 

Figure 3.19 Determination of warping path for multivariate time series data. 

Step 4 

Final Distance Calculation by incorporating dependent DTW of equation 3.9 into 

equation 3.7: 

 

DTW   

= 
Distance of [(3,3), (2,2), (1,1)]

3⁄  

=
√(3−3)2+ (4−3)2+ (3−4)2+ √(2−2)2+ (3−2)2+ (2−3)2+ √(1−1)2+ (2−1)2+ (1−2)2  

3
 

= 
√2+ √2+ √2⬚  

3
 

= 1.41 
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f. Shape Dynamic Time Warping 

ShapeDTW first uses shape descriptors to represent the temporal points, then aligns 

different sequences according to the descriptors by DTW. This allows more focus on 

local shape during the matching process which produces more semantically meaningful 

results (Zhao & Itti 2017) compared to DTW which finds global optimum. Piecewise 

aggregate approximation, PAA is obtained by splitting the series into a designated 

number of intervals,  

There are two steps in shaping DTW implementation. Firstly, the original time 

series is transformed into shape descriptors that represent the local sequence 

information. The series is divided into parts of sequences. DTW is used to derive the 

shape of each divided sequence to produce the characteristic descriptor.  

Secondly, DTW is used to align these descriptors which is similar to the typical 

DTW to produce the warping path. Figure 3.22 shows an example of ShapeDTW 

alignment on the SRS2 dataset. 

 

Figure 3.20 ShapeDTW alignment procedure 

Source: Zhao & Itti (2017) 
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Shape Dynamic Time Warping 

1: Inputs:  

2: Time series P ∈ RLP and Q ∈ RLQ ; subsequence length l; shape descriptor function F 

3: ShapeDTW: 

4: 1. Sample subsequences: S P ← P, S Q ← Q; 

5: 2. Encode subsequences by shape descriptors: 

6:                d P ← F(S P ), d Q ← F(S Q); 

7: 3. Align descriptor sequences d P and d Q by DTW. 

8: Outputs: 

9: Warping matrices: WP and W Q; 

10: ShapeDTW distance: k W˜ P ∗ · d P − W˜ Q ∗ · d Q k 

Figure 3.21 Pseudo code of Shape Dynamic Time Warping 

Source: Zhao & Itti (2017) 

 

Figure 3.22 Example of Shape DTW alignment of SRS2 dataset 

ShapeDTW was initially performed on univariate time series data. In this 

dissertation, the multivariate data is converted to one-dimensional for further analysis 

3.4.2 Dual Attention Network 

The proposed baseline framework of DA-Net is shown in Figure 3.23. It is a 

hierarchical structure with four time-block partition layers and dual-attention blocks. 
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Figure 3.23 The overall framework of DA-Net 

Source: Chen et al. (2022) 

The time-block partition layers reduce time series length by concatenating the 

four non-overlap neighbor timestamps as a time-block (a token in NLP), and each time-

block flattened and projected to 4C-dimensional embedding. This is performed at the 

beginning of each stage and reduces length of input data by a factor of four (Figure 

3.24). 

 

Figure 3.24 Attribute transformation of DA-Net 

Source: Chen et al. (2022) 
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Attention blocks are made of SEWA layer, SSAW layer, Layer Normalisation 

(LN) layer, MLP layer as shows in Figure 3.25. The second module has an additional 

‘shifted window layer’ which shifts time-blocks within the window. The benefit of this 

is to resolve long-time dependencies restricted to local window partitioning.  

 

Figure 3.25 Dual-attention block 

Source: Chen et al. (2022) 

The SEWA layer focuses on local distinguishing attributes with the aid of global 

window-attribute. It divides attributes by windows X ∈ RM x C x .W where M = the 

number of windows, C = the number of channels, and W = time block within a window. 

By squeeze and excitation, it suppresses non-significant windows and amplify 

significant ones and normalise weights to zero to one using sigmoid function. This step 

enables high-level attributes of MTS to embed into a window as it calculates the values 

from time blocks and channels. 

Sparse Self-Attention within the Window (SSAW) layer captures the global 

long-range dependencies, reduces computation complexity by Sparse-attention, and 

expands window size.  

Hyperparameters in DA-Net baseline experiment are set with batch size B = 16, 

window size M = 64, channel number of hidden layer C = 96, multi-head numbers = 

{3,6,12,6} and layer numbers = {2,2,6,2} (Chen et al. 2022). 
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a. SEWA layer 

SEWA layer divide attributes by windows into X ∈ RM x C x .W where M = 

number of windows, C = number of channels and W = number of time block 

within a window. This input X is then transformed and mapped to attribute S = 

RM
′
 x C

′
 x W

′ after squeeze and excitation in equation 3.10 to 3.12 (Chen et al. 

2022). 

Step 1: Squeeze 

𝑍 = 𝐹𝑠𝑞 (𝑋) =  
1

𝐶 𝑥 𝑊
∑ ∑ 𝑋

𝑊

𝑤

𝐶

𝑐

(𝑐, 𝑤) 

 

(3.10) 

Step 2: Excitation 

H = 𝐹𝑒𝑥 (𝑍) =  𝑊2𝑅𝑒𝐿𝑈(𝑊1𝑍) 

 

where W1 and W2 = learning parameters of linear projections 

 

 (3.11) 

S = 𝐹𝑠𝑐𝑎𝑙𝑒 (𝐻, 𝑋) =  Xsigmod(H) (3.12) 

  

b. SSAW layer 

Figure 3.27 shows a summary of how SSAW selects the top u. In this case, u is set as 

two. The red points are query and key lines with huge difference whereas the green 

points are no significant difference. The output is the concatenated values of the top u 

scores and mean values. 
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Sparse Self Attention within Windows 

1: Input  Queries, 𝑄 ∈ 𝑅𝑀𝑄 𝑥 𝐶  , Keys, K∈ 𝑅𝑀𝐾 𝑥 𝐶;  and Values, V∈ 𝑅𝑀𝑉 𝑥 𝐶 ,  

u = Mv lnMQ, U = MQ lnMK ;   

where MQ, Mk and Mv = window size 

Ensure: Self-attention feature map S; 

2: 1: Randomly select U keys as K; 

3: 2: Calculate measurement M using K by formulation: 

4 

�̅�(𝑞𝑖 , 𝐾) =  
𝑚𝑎𝑥

𝑗 {
𝑞𝑖𝑘𝑗

𝑇

√𝑑
} −  

1

𝐿𝐾

∑
𝑞𝑖𝑘𝑗

𝑇

√𝑑

𝐿𝐾

𝑗=1

 

5: 3: Select top-u Q using M by formulation: 

6 �̅� = 𝑡𝑜𝑝𝑢�̅� 

7: 4: Calculate self-attention feature map S using Q by formulation: 

8 

𝑆 = {
𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (

�̅�𝐾𝑇

√𝑑
) . 𝑉  𝑖𝑓 𝑖 − 𝑡ℎ 𝑞𝑢𝑒𝑟𝑦 𝑖𝑠 𝑡𝑜𝑝 − 𝑢 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑀𝑒𝑎𝑛 (𝑉) 𝑖𝑓 𝑖 − 𝑡ℎ 𝑞𝑢𝑒𝑟𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑜𝑝 − 𝑢 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

 

Figure 3.26 Pseudo code for Sparse Self Attention within Windows 

  Source: Chen et al. (2022) 

 

Figure 3.27 Figure of SSAW 

Source: Chen et al. (2022) 

Pus
at 

Sum
be

r 

FTSM



57 

 

3.5 EVALUATION 

3.5.1 Performance 

a. Accuracy, precision, recall, and F1-score 

The performance of DTW-DA-Net is evaluated by comparing accuracy, precision, 

recall, and F1-score. Accuracy is the ability to correctly predict positive and negative 

values, precision is the ability to correctly predict positive values, recall is the 

measurement of ability to predict positive cases correctly, and F-measure is the 

weighted average of precision and recall (Melhem et al. 2021; Sisodia & Sisodia 2018). 

Formula interpreting the statements are shown in equations 3.13, 3.15, 3.16, and 3.16 

(Melhem et al. 2021; Sisodia & Sisodia 2018). 

Accuracy = 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

 

(3.13) 

Precision = 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

 

(3.14) 

Recall = 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

 

(3.15) 

F1-score = 2 x  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (3.16) 

b. Performance evaluation 

Comparison of performance of two methods is measured by increase in percentage. 

Performance comparison:  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒐𝒇 𝑴𝒆𝒕𝒉𝒐𝒅 𝑨−𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒐𝒇 𝑴𝒆𝒕𝒉𝒐𝒅 𝑩

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒐𝒇 𝑴𝒆𝒕𝒉𝒐𝒅 𝑩
 x 100 

 

(3.17) 

3.5.2 Statistical Evaluation 

To compare the algorithm's effectiveness on different datasets, the Friedman test is 

performed with α of 0.05 to test the hypothesis if there is a significant difference in 
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performance. Then, the Wilcoxon signed-rank test is performed with Holm’s alpha 

correction as performed by Ismail Fawaz et al. (2019). Ruiz et al. (2021)and Chen et al. 

(2022) also performed the Wilcoxon signed rank test in their MTSC. A critical 

difference diagram will show the ranking of the best performer to the weakest performer 

and if there is a statistical difference. 

3.6 CHAPTER SUMMARY 

This chapter gives an outline of the structure of this research. The research design 

explains the proposed method to address the research questions and objectives. The 

datasets are categorized according to different types and will be presented as such in the 

following chapters. The methods section explains the details of the algorithm structure 

with related examples. Evaluation methods to be used in the next chapter are explained.  

The following chapter gives the results of an implementation of the design 

explained in this chapter.  

Pus
at 

Sum
be

r 

FTSM



 

 

 

CHAPTER IV  

 

 

RESULTS AND DISCUSSION  

4.1 INTRODUCTION 

This chapter presents the results and discussion of the proposed DTW-DA-Net and 

ShapeDTW and evaluation if the proposed methods can meet the research objective. 

The results and discussion are presented in five sections.  

Section 4.2 assesses the first objective “To assess the applicability of univariate 

distance-based classification methods in solving multivariate time series 

classification”. In this section, the results and applicability of DTW-DA-Net and 

ShapeDTW-1NN are assessed. 

Section 4.3 evaluates the second objective “To propose an incorporation of 

DTW with DA-Net; and compare to DA-Net”. Performance of DTW-DA-Net is 

assessed in Section 4.3.1 and comparison with DA-Net is discussed in Section 4.3.2. 

Section 4.4 tests the third objective “To evaluate and compare the performance 

of DTW-DA-Net with other state-of-the-art multivariate time series classification 

methods”. DTW-DA-Net’s performance is compared to existing distance-based 

methods; ED-1NN, DTW-1NN, and their variants.  

Section 4.5 summarizes the outcome of the results.  
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4.2 APPLICABILITY OF UNIVARIATE DISTANCE-BASED CLASSIFICATION 

METHODS IN SOLVING MULTIVARIATE TIME SERIES 

CLASSIFICATION 

There are many distance-based classification methods performed on TSC, but many are 

on univariate time series data. Our first objective is to assess if the recognized distance-

based method on UTSC can be extended to use on MTSC with good performance.  

Ruiz et al. (2021) suggests that DTW-D should be the benchmark for 

comparison. DTW-1NN-D by Chen et al. (2013) was one of the recognized methods 

that was used in the UEA multivariate dataset. There are many variants of DTW. Zhao 

& Itti, (2017) showed that NN-shape DTW was able to perform well with univariate 

data where it is better than DTW on many datasets and improved classification 

accuracy. In this dissertation, we use ShapeDTW-1NN to evaluate if we can extend the 

use of the DTW variant from univariate to multivariate application.  

One of the most well-known distance-based methods for UTSC is DTW. We 

have selected DTW to incorporate into one of the recent well-performing methods, DA-

Net for evaluation. DTW-DA-Net assesses the extensibility of DTW into a new 

algorithm and ShapeDTW-1NN’s approach is to assess the extensibility of DTW 

variant from univariate to multivariate TSC. 

Table 4.1 of performance comparison showed that ShapeDTW and DTW-DA-

Net can perform on the four types of multivariate time series data. DTW-DA-Net has 

four wins whereas ShapeDTW has three wins. Performance comparison shows the 

difference of results in percentage for ShapeDTW-1NN to DTW-DA-Net and vice 

versa. DTW-DA-Net has only one win more than ShapeDTW, but by comparing the 

performance in percentage, the magnitude of improvement is much greater in DTW-

DA-Net.  

HMD and SWJ using DTW-DA-Net have 158.70%% and 150.38% 

improvement compared to only 12.85% in SRS2 which is the highest improvement 

using ShapeDTW. As HMD and SWJ have more classes compared to SRS2 with only 

two classes, DTW-DA-Net with the more complex self-learning algorithm may work 
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better. For AF which only has a small train and test dataset of 15 each, there is no 

difference in performance where both methods have an accuracy of 0.267. 

For electrical biosignals, DTW-DA-Net performs better with 2 wins compared 

to ShapeDTW-1NN where 1 win is of very low margin difference. DTW-DA-Net 

performs better on HAR datasets which has more than 2 classes to distinguish.  

ShapeDTW also performs better on the HB dataset which has only two classes. 

This performance for ShapeDTW is better for motion data which has more than two 

classes but only with a negligible margin of 0.7.  

The performance comparison is shown in Figure 4.1 where overall DTW-DA-

Net performance is better than ShapeDTW-1NN with an average performance 

improvement of 40.39% (Table 4.1). The effect of noise in the time series may have 

more impact on ShapeDTW-1-NN resulting in poorer results. 

Table 4.1 Performance comparison of ShapeDTW-1NN and DTW-DA-Net with 

optimal performance in bold 

Type Dataset 

Accuracy Performance comparison (%) 

ShapeDTW-

1NN 

DTW-DA-

Net 

ShapeDTW-

1NN/ DTW-

DA-Net 

DTW-DA-

Net/ 

ShapeDTW-

1NN 

Electrical 

Biosignals  

(ECG/ EEG/ 

MEG) 

AF 0.267 0.267 0.00 0.00 

HMD 0.230 0.595 -61.34 158.70 

SRS2 0.527 0.467 12.85 -11.39 

SWJ 0.133 0.333 -60.06 150.38 

Accelerometer/ 

gyroscope 

(HAR) 

BM 0.750 0.975 -23.08 30.00 

NA 0.867 0.917 -5.41 5.72 

Coordinates 

(Motion) 
AWR 0.983 0.976 0.72 -0.71 

Audio  

(AS) 
HB 0.712 0.644 10.56 -9.55 

Average 0.56 0.65 -15.72 40.39 

Win 3 4 3 4 
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Figure 4.1 Performance comparison of ShapeDTW-1NN and DTW-DA-Net 

In summary, DTW and ShapeDTW used for UTSC can be extended to use in 

MTSC; whether it is the incorporation of basic DTW with newer algorithms or addition 

of variant DTW to existing method. ShapeDTW-1NN generally performs better on 

datasets with 2 classes only and DTW-DA-Net performs better in datasets with more 

than two classes. 

Figure 4.2 shows the warping path of the multivariate time series as one 

common path which is similar to the univariate time series.  
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…continuation  
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Figure 4.2 Warping path of density plot in the eight multivariate time series dataset 
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4.3 EVALUATION OF INCORPORATION OF DTW INTO DA-NET 

4.3.1 Evaluation of DTW-DA-Net  

Table 4.2 and Figure 4.3 shows the performance of DTW-DA-Net on the eight datasets. 

DTW-DA-Net performs very well for BM, NA, and AWR data, performs moderately 

for HB and HMD data, and does not perform well for AF, SRS2, and SWJ data.  

The F1-score, precision, and recall reflect the accuracy of the method on the 

datasets. High accuracy of above 0.9 is seen on datasets with more than four classes but 

there is no consistent pattern in low and moderate performance in datasets with four or 

fewer classes. The best performers are observed on datasets with shorter lengths of 

below 150. 

Table 4.2 Evaluation metrics on the eight datasets using DTW-DA-Net 

Type Dataset Accuracy F1 score Precision Recall 

Electrical 

Biosignals  

(ECG/ EEG/ 

MEG) 

AF 0.267 0.221 0.192 0.267 

HMD 0.595 0.563 0.572 0.583 

SRS2 0.467 0.467 0.467 0.467 

SWJ 0.333 0.274 0.259 0.333 

Accelerometer/ 

gyroscope 

(HAR) 

BM 0.975 0.975 0.977 0.975 

NA 0.917 0.917 0.919 0.917 

Coordinates 

(Motion) 
AWR 0.977 0.977 0.979 0.977 

Audio  

(AS) 
HB 0.644 0.597 0.596 0.613 

Average 0.647 0.624 0.620 0.641 
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Figure 4.3 Visualization of evaluation metrics on the 8 datasets using DTW-DA-Net 

 

Figure 4.4 shows the accuracy plot for DTW-DA-Net. BM, NA, and AWR show 

the merging of accuracy whereas there is a gap in the training and test accuracy curve 

for the other datasets. The large gap between the train and test set of AF, HMD, SRS2, 

SWJ, and HB suggests there may be overfitting. This may be due to the pattern of the 

data or type of algorithm. 
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Figure 4.4 DTW-DA-Net model accuracy plot. Train set in blue line and test set in 

orange line. 
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Figure 4.5 shows the time taken to train each dataset which ranges from 7 

minutes to 143 minutes depending on data size. The longest time of 143 minutes is for 

the AWR dataset which is of coordinate type, with 275 train data, 300 train data, 9 

dimensions, a length of 144, and 25 classes. In real-life situations, the dataset will be 

much larger than this and thus be a limitation to performing this method. 

 

Figure 4.5 DTW-DA-Net train time for each dataset in minutes. 

4.3.2 Comparison of DTW with DTW-DA-Net 

DA-Net produced promising results on MTSC (Chen et al. 2022). The writers 

have proposed to look into DTW for dynamic window splitting in the future. In this 

dissertation, we look into the effect of DTW on DA-Net. 

Table 4.3 of the performance comparison between DA-Net and DTW-DA-Net 

showed similar outcomes with both methods having four wins each. DA-Net has an 

average accuracy of 0.64 and DTW-DA-Net has an average accuracy of 0.65. The 

performance comparison is presented as a percentage improvement in DA-Net relative 

to DTW-DA-Net and vice versa. The highest increase in performance is by DTW-DA-

Net on the HMD dataset with 71.47% improvement. BM, NA, and HB have slight 

improvements of 5.41%, 4.52%, and 2.88% respectively.  

DA-Net still outperforms DTW-DA-generally for AF, SRS2 SWJ and AWR 

datasets; whereas DTW-DA-Net performs better for BM, NA, and HB. Coordinates and 

audio data types have only one dataset each and cannot be used to generalize.  
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Table 4.3 Performance comparison of DA-Net and DTW-DA-Net with optimal 

performance in bold 

Type Dataset 

Accuracy 
Performance Comparison 

(%) 

DA-Net 

 

DTW-

DA-

Net 

DA-

Net/DTW-

DA-Net 

DTW-DA-

Net/DA-Net 

Electrical Biosignals 

(ECG/ EEG/ MEG) 

AF 0.414  0.267 55.06 -35.51 

HMD 0.347 0.595 -41.68 71.47 

SRS2 0.561 0.467 20.13 -16.76 

SWJ 0.400 0.333 20.12 -16.75 

Accelerometer/ 

gyroscope 

(HAR) 

BM 0.925  0.975 -5.13 5.41 

NA 0.877 0.917 -4.32 4.52 

Coordinates (Motion) AWR 0.980 0.976 0.41 -0.41 

Audio 

(AS) 
HB 0.626 0.644 -2.8 2.88 

Average 0.64 0.65 5.22 1.86 

Win 4 4 4 4 

Figure 4.6 displays the similarities in accuracy in most of the datasets where the 

performance of both methods is comparable, except for HMD with a large difference. 

 

Figure 4.6 Performance comparison of DA-Net and DTW-DA-Net 
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In summary, the addition of DTW to DA-Net has a different outcome on 

different datasets and is not generalized to the data type. Both classifiers are comparable 

with DA-Net performing slightly better.  

4.4 COMPARISON OF DTW-DA-NET WITH OTHER MULTIVARIATE TIME 

SERIES CLASSIFICATION METHODS 

Table 4.4 shows the comparison to evaluate the performance of incorporation of DTW 

into DA-Net with well-performing distance-based methods which are ED-1NN, DTW-

1NN, their variants, (Chen et al. 2013) and the recent DA-Net (Chen et al. 2022).  

DTW -DA-Net achieved two wins, one for the HMD dataset with an accuracy 

of 0.595 and one for the NA dataset with 0.917 accuracy. ShapeDTW-1NN on the other 

hand did not manage to outperform any of the existing methods. BM and AWR have 

achieved very good results before and both methods in this dissertation perform poorer 

than the existing methods.  

The highest average accuracy of 0.65 is DTW-DA-net, followed by DA-Net 

with 0.64 accuracy. However, DTW-DA-Net has 2 wins compared to DA-Net with 

three wins. These newer methods have slightly better overall performance compared to 

the existing DTW-1NN-I and DTW-1NN-I (norm) with average 0.62 accuracy and one 

win each.  

The overall comparison showed that DA-Net performs well on AF, SRS2, and 

SWJ (electrical biosignals). DTW-DA-Net is suitable to perform best for NA and 

second best for BM which suggests beneficial in accelerometer/gyroscope dataset. 

DTW-DA-Net is unable to beat the existing DTW-1NN variant for AWR and HB. 

One point to highlight with DTW-DA-Net is the improved performance in the 

NA dataset compared to the other methods. Figure 4.7 shows that NA has an 

unpredictable pattern compared to the other MTS data. The addition of DTW may be 

beneficial for irregular time series datasets. 
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Table 4.4 Comparison of accuracy in different methodologies with optimal performance in bold 

Dataset 

Accuracy 

ED-1NN 

DTW-

1NN-

D  

ED-

1NN(norm)  

DTW-

1NN-I  

DTW-

1NN-I 

(norm)  

DTW-

1NN-D 

(norm)  

DA-

Net  

 

ShapeDTW-

1NN 

DTW-

DA-

Net 

AF 0.267 0.200 0.247 0.267 0.267 0.220 0.414  0.267 0.267 

HMD 0.279 0.231 0.278 0.306 0.303 0.231 0.347 0.230 0.595 

SRS2 0.483 0.539 0.483 0.533 0.533 0.539 0.561 0.527 0.467 

SWJ 0.200 0.200 0.200 0.333 0.333 0.200 0.400 0.133 0.333 

BM 0.675 0.975 0.676 1.000 1.000 0.975 0.925  0.750 0.975 

NA 0.860 0.883 0.850 0.850 0.85 0.883 0.877 0.867 0.917 

AWR 0.970 0.987 0.970 0.980 0.980 0.987 0.980 0.983 0.976 

HB 0.620 0.717 0.619 0.659 0.658 0.717 0.626 0.712 0.644 

Average 0.54 0.47 0.54 0.62 0.62 0.59 0.64 0.56 0.65 

Win 0 0 0 1 1 0 3 0 2 Pus
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Figure 4.7 Summary of visualization of eight datasets. 

Figure 4.8 shows a critical difference diagram for the two new methods of 

ShapeDTW-1NN and DTW-DA-Net compared to six existing distance-based methods 

and the recent DA-Net. All classifiers are compared using the Friedman test and ranked 

based on the Wilcoxon test with the smallest number representing the best performance. 

We test the null hypothesis that there is no difference between the accuracy of all the 

methods at α = 0.05 significance level. Null hypotheses is rejected if p ≤ α and fail to 

reject if p ≥ α We fail to reject the null hypothesis The horizontal thick line across 

indicates that there is no difference in performance for the methods. The existing DA-

Net still performs best compared to the other methods for these eight datasets.  

 

Figure 4.8 Critical difference diagram for Shape-DTW and DTW-DA-Net compared 

to seven existing methods 
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 Table 4.5 shows example of the p-value of different algorithms with relative to 

DTW-1NN-D. These values will be compared with an adjusted α value by Holm-

Bonferroni correction which will not be covered in the scope of this dissertation  

Table 4.5 Performance relative to benchmark DTW-1NN-D 

Algorithm P-value 

ShapeDTW-1NN 0.109 

ED-1NN-D(norm) 0.233 

ED-1NN 0.292 

DTW-1NN-D(norm) 0.317 

DTW-1NN-I 0.461 

DTW-1NN-I(norm) 0.461 

DA-Net 0.461 

DTW-DA-Net 0.528 

Figure 4.9 shows a box plot of the eight datasets based on the results of Table 

4.4. BM, NA (accelerometer/gyroscope data), and AWR (coordinates) data are the best 

performers with most algorithms. BM has the widest distribution of accuracy indicating 

nonconsistency in methods and difficulty in generating accurate results. AWR has the 

best performance as all the methods give good results with small variances. NA also 

performs well and is consistent with all algorithms. HB and SRS2 showed intermediate 

performance outcomes with most algorithms. HB is an audio dataset whereas SRS2 is 

electrical biosignals. These two datasets have a similar number of train and test datasets 

with the least class of two but differ in dimension and length. The similarities may lead 

to similar performance of different classes. AF, HMD, and SWJ which are electrical 

biosignals are the lowest-performing datasets across all algorithms.  

AF and HMD always had poor results, but DA-Net and DTW-DA-Net were able 

to produce a major improvement in results as can be seen in the outlier 0.414 for AF 

with DA-Net, and 0.595 for HMD with DTW-DA-Net. By comparing HMD within the 

electrical biosignal dataset, it has the highest number of classes, 4, and the largest 

dimension, 10. The incorporation of DTW into DA-Net has affected the interpretation 

of data for better outcomes. AF has consistently produced results below 0.267 but DA-

Net was able to improve it to 0.414 compared to DTW-DA-Net which is still 0267. AF 
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is made of only 15 train and test datasets. It may be possible that the incorporation of 

DTW into the algorithm with a small amount of data has produced overfitting in the 

deep learning network.  

 

Figure 4.9 Box plots of differences in accuracies of different methods on different 

datasets. 

In short, DTW-DA-Net can produce better results in two out of eight of the 

existing datasets. There is still no one-size-fits-all algorithm for MTSC. The selection 

of the algorithm may still be dependent on the data type.  

4.5 DISCUSSION 

Differences in performance between the methods can be due to many factors such as 

differences in properties of datasets, methods, and the suitability or applicability of the 

methods to the dataset.  

 Multivariate time series data can be in different number of dimensions, lengths, 

and classes. Complicated data with a larger dimension, longer sequence, and more 

classes are more difficult to classify. A different number of training data also affects the 

machine algorithm’s training. Training a dataset that is too small will not be sufficient 
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to teach the algorithm to perform properly. It is a challenge to extend UTSC into MTSC 

as the structure of data for both has a major difference. Classification for multivariate 

time series needs to consider many aspects especially on the local, global and spatial 

features. The relation and correlation between these features can be very complex. No 

one algorithm can suit all datasets. In this research, DTW-DA-Net has the benefit of the 

NA dataset which performs better than other existing methods with an accuracy of 0.917 

and the accuracy curve indicates no overfitting.  

 Methods like Shape-DTW with 1-NN use a nearest-neighbor approach and are 

beneficial for data where shape discrimination is important. DTW-DA-Net is a deep 

learning method with a neural network approach and can manage more complex 

datasets. 

4.6 CHAPTER SUMMARY 

This chapter presents the outcome of the research questions and objectives. Section 4.2 

shows the outcomes of the applicability of UTSC methods to MTSC in response to the 

first research question and objective. 

Section 4.3 regarding the second research question and objective showed that 

DTW-DA-Net performs similarly to DA-Net with four wins each. The accuracy for 

DTW-DA-Net is 0.65 and DA-Net is 0.64.  

 Evaluation of the third research question and objective in Section 4.4 showed 

that DTW-DA-Net performed better in two out of eight datasets when compared to 

other distance-based methods. 
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CHAPTER V  

 

 

CONCLUSION AND FUTURE WORK 

5.1 INTRODUCTION 

This chapter concludes the discussions and findings of the proposed method, explains 

the limitations, and suggests future work. This chapter of three sections consists of 

Section 5.2 which is the research summary, and Section 5.3 which is the limitation and 

future research direction. 

5.2 RESEARCH SUMMARY 

There are many established methods in UTSC. However, for MTSC, there are still 

limited methods of producing consistent results with different types of datasets. In 

reality, there are more MTSC problems than UTSC problems and it is still a challenge 

to determine a generalized method for MTSC problems. This research approaches this 

challenge by reviewing available established methods and recent well-performing 

methods to produce a new proposed algorithm by expanding the distance-based method 

from UTSC to MTSC. 

 To address the first research question “Are distance-based methods such as 

DTW and ShapeDTW performed on univariate time series analysis applicable to 

multivariate time series?” and the first objective “To assess the applicability of 

univariate distance-based classification methods in solving multivariate time series 

classification.”, DTW is incorporated into DA-Net and its variant, ShapeDTW is 

incorporated into 1-NN. These methods showed that DTW and its variant ShapeDTW 

can be used for MTSC. Comparison of results showed that incorporation of DTW into 

recent methods produced better outcomes than incorporating variant DTW into 

traditional algorithms.  
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 DTW with 1-NN is an established method and is still recommended as the 

benchmark for MTSC. DA-Net is a recent algorithm that produced improved 

performance compared to existing MTSC methods. This research proposed to 

incorporate established DTW with recent DA-Net to answer the second research 

question “Does incorporation of DTW to DA-Net affect performance of multivariate 

time series classification?” and address the second objective “To propose an 

incorporation of DTW with DA-Net; and compare to DA-Net”. Comparison of DTW-

DA-Net with DA-Net showed different suitability for different types of data. DTW-

DA-Net performs best with HAR and AS data. DTW-DA-Net does not perform well on 

most ECG data.  

DTW-DA-Net results are compared with existing distance-based methods to 

answer the research question “How is the performance of DTW-DA-Net compared with 

other state-of-the-art multivariate time series classification methods?” and address the 

objective “To evaluate and compare the performance of DTW-DA-Net with other state-

of-the-art multivariate time series classification methods.”. There is no significant 

difference in all the algorithms tested. However, DTW-DA-Net produced the best 

results in two out of eight of the datasets when compared to existing distance-based 

methods. DTW-DA-Net achieved the best accuracy of 0.917 in the NA dataset. 

5.3 LIMITATION AND FUTURE RESEARCH DIRECTION 

MTSC is a complex problem and there is room for much improvement. The limitations 

in this dissertation can serve as opportunities for further consideration in future works 

1. This dissertation used dependent DTW. Future studies can be performed on 

independent DTW as there are still disputes on which DTW performs better for 

which kind of dataset. 

2. DTW-DA-Net takes a long time to run on large datasets and may not be suitable 

for practical use. It is best to evaluate ways for DTW to perform faster such as 

implementing boundaries or limitations to improve speed for use on large 

datasets. 

Pus
at 

Sum
be

r 

FTSM



77 

 

3. The evaluation of DTW-DA-Net and ShapeDTW-1NN with existing methods 

showed that there is an improvement in performance for DTW-DA-Net but no 

improvement for ShapeDTW-1NN. It is recommended to look into future 

methods that incorporate standard DTW into newer algorithms instead of 

variants of DTW into traditional methods. 

4. The most improvement is seen in the HMD dataset with an accuracy of 0.595 

compared to the previous best accuracy of 0.347 by DA-Net. HMD has the 

highest number of classes and largest dimension in the group of four electrical 

biosignals. There is also improvement in NA which is one out of two 

accelerator/gyroscope datasets. This data also has a higher dimension and class 

compared to the other datasets in the same group. As there are only four data on 

electrical biosignals and two on accelerator/gyroscope in this dissertation, there 

may be a potential benefit to look into further analysis in this data type with 

larger dimension or class to assess if the incorporation of DTW is of 

significance. 

5. The accuracy plot shows that there is a gap between the train and test set for AF, 

HMD, SRS2, SWJ, and HB. There may be overfitting. It is suggested to perform 

the proposed method on a larger train dataset for better accuracy. 
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